
Spring MVC 4.x
Spring 5 Web Reactive

Rossen Stoyanchev
@rstoya05

Part 1

Spring MVC 4.3

Reactive programming for Java devs

Spring 5 Web Reactive

Shortcut Annotations

@RequestMapping

@GetMapping

@PostMapping

@PutMapping

@DeleteMapping

@RequestScope

@SessionScope

@ApplicationScope

@RequestAttribute

@SessionAttribute

Not to be confused with:

@SessionAttributes

@RestControllerAdvice

@ModelAttribute(binding=false)

Pre-load Foo in the model

Foo object without binding

Form object
with binding

HTTP OPTIONS, HEAD

automated handling

curl -v -X OPTIONS http://localhost:8080/foos/123

< HTTP/1.1 200 OK
< Server: Apache-Coyote/1.1
< Allow: GET,HEAD
< Content-Length: 0

curl --head http://localhost:8080/foos/123

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json;charset=UTF-8
Content-Length: 155

ForwardedHeaderFilter

Complements existing support

for “X-Forwarded-*” in

[Mvc | Servlet] UriComponentsBuilder

RestTemplate

default URI variable values

Client Mock REST Tests

expected count + order of requests

Spring MVC 4.3

Reactive programming for Java devs

Spring 5 Web Reactive

Long Running
Shift To
Concurrency

29

Self-sufficient apps

App server

Keep it simple, don’t distribute

30

Independent services

Cloud environment

Distributed apps
10 years ago

Today

Impact on Programming Model

Imperative logic is not a simple path any more

Forced to deal with asynchronicity

Limits of scale

31

Fundamentally Asynchronous

Async and non-blocking by design

Small number of threads

Efficient scale

32

Design async API with
 Java Futures

33

Return a Value

34

...

...

Usage

35

Return Value with Future

36

...

May be thrown in
different thread

Usage

37

Ugh

Return Value with CompletableFuture

38

...

...

Usage

39

Async callback

Return Collection

40

...

...

Return Void

41

...

...

Return Void

42

...

...

Success or Failure
callback

CompletableFuture

43

Fundamentally the right idea for use in async APIs

Allows declarative composition of async logic

Lambdas keep it readable

CompletableFuture

Not ideal for Collection return values

Nor for latency sensitive data sets

Nor large or infinite data sets

44

Async return values
as a “stream” ?

46

onNext onNext onNext

onError or
onComplete

Return type Use case Notifications
void Success onComplete()

void Failure onError(Throwable)

User Match onNext(User), onComplete()

User No match onComplete()

User Failure onError(Throwable)

List<User> Two matches onNext(User), onNext(User), onComplete()

List<User> No match onComplete()

List<User> Failure onError(Throwable)

Java 8 Stream

48

Great example of the kind of API we’d like

Declarative composition of async logic per item

Lambdas keep it readable

Java 8 Stream

49

Built for collections

Not for active or “hot” source of data

Latency-sensitive data sequences

50

Doug Lea
Reactive Streams & Java 9 initial announcement

No single best fluent async API [...]

Until now one missing category was "push"
style operations on items as they become
available from an active source.

http://cs.oswego.edu/pipermail/concurrency-interest/2015-January/013641.html

Reactive Streams

51

Small API, spec rules, and TCK

Publish-subscribe with back pressure

Interoperability across async components and libraries

52

Project Reactor

Reactive Streams library for the JVM

Declarative operations on items similar to Java 8 Stream

Flux and Mono reactive composable API types

Reactive Repository

Reactive Repository In Use

onSubscribe

request(unbounded)

onNext(User: Jason)

onNext(User: Jay)

...

onComplete()

By default consume without
back-pressure

Example output

Spring MVC 4.x
Spring 5 Web Reactive

Rossen Stoyanchev
@rstoya05

Part 2

Spring MVC 4.3

Reactive programming for Java devs

Spring 5 Web Reactive

Reactive Programming

A style of micro-architecture

Declarative, functional-style, composition of logic

The opposite of imperative

58

Imperative / Blocking

Functional /
Neutral to Asynchronicity

Thread Pool Style
Processing

61

Server Threads

Application Processing

150 ms 150 ms15 ms 15 ms

20 ms

250 ms

 50 ms

150 ms

125 ms

 75 ms

200 ms

Thread PoolThread Pool

Network
Latency

Network
Latency

Server Threads

Application Handling

Load Balancer

Requests Requests

Server Threads

Application Handling

Event Loop Style
Processing

64

Application Processing

IO
selector

worker worker worker

125 ms

 75 ms

200 ms

20 ms

 50 ms

150 ms

250 ms

pan.addWater(() ->
 range.lowerHeat(() ->
 pan.addBrownRice(() ->
 pan.setTimeout(() -> {
 range.turnOff();
 // ready...
 }, Duration.ofMinutes(40)))));

Non-blocking Application

Rise above the callbacks

ReactiveX

DeclarativeFunctional, programming on
Observable streams

Reactive Streams Specification

Async stream processing
with “reactive” back-pressure

70

public interface Subscriber<T> {

 void onSubscribe(Subscription sub);

 void onNext(T item);

 void onError(Throwable ex);

 void onComplete();

}

public interface Subscription
{

 void request(long n);

 void cancel();

}

public interface Publisher<T> {

 void subscribe(Subscriber<? super T> subscriber);

}

Reactive Streams

Backpressure

Project Reactor

Reactive Streams + ReactiveX

Reactor Mono

Reactor Flux

Reactive Repository

Subscriber triggers flow of data

Reactive Repository in Use

onSubscribe

request(unbounded)

onNext(User: Jason)

onNext(User: Jay)

...

onComplete()

By default consume without
back-pressure

Example output

Consume Two Items at a Time

onSubscribe

request(2)

onNext(User: Jason)

onNext(User: Jay)

request(2)

onNext(User: Joe)

onNext(User: John)

...

Producer complies with
back-pressure

Example output

Spring MVC 4.3

Reactive programming for Java devs

Spring 5 Web Reactive

Spring Data Reactive

Spring Data Reactive

Reactive Processing Pipeline

RepositoryController
Web
Framework

HTTP Server

End-to-end back-pressure

Reactive Web Controller

Reactive Web Controller Spring 5

Reactive Web Controller / RxJava Spring 5

Spring Web MVC Spring Web Reactive

@Controller, @RequestMapping

Servlet API

Servlet Container

Reactive HTTP

Tomcat, Jetty, Servlet 3.1+,
Netty, Undertow

Router Functions

Reactive HTTP Adaptation

Reactive HTTP Server Adaptation

Tomcat, Jetty, Servlet 3.1+ containers

Netty (Reactor Netty, RxNetty)

Undertow

Reactive Encoder and Decoder

Serialization to/from Flux<T> and Flux<DataBuffer>

JSON (Jackson) and XML (JAXB / Aalto)

Server-Sent Events

Resource with zero-copy file transfer

Along with Spring Web MVC

Operates on reactive HTTP request / response

Shared algorithms and mechanisms

Spring Web Reactive

Non-Blocking HTTP GET

Synchronous, non-blocking method

Async, non-blocking method

Non-Blocking HTTP POST

or

Server-Sent Events

Zero-Copy File Transfer

WebClient

WebClient / RxJava

Non-blocking WebClient Scatter/Gather

Functional Web Framework

No annotations, minimal, and transparent

Same reactive foundation

"Spring 5: Functional Web Framework" blog post

https://spring.io/blog/2016/09/22/new-in-spring-5-functional-web-framework
https://spring.io/blog/2016/09/22/new-in-spring-5-functional-web-framework

Functional-style Web Routing

http://start.spring.io

https://start.spring.io
https://start.spring.io

Spring Boot “Web Reactive” Starter

Helpful instructions:

https://github.com/bclozel/spring-boot-web-reactive

https://github.com/bclozel/spring-boot-web-reactive
https://github.com/bclozel/spring-boot-web-reactive

Manual Bootstrap

Only a few lines of code:

Spring Framework 5.0 snapshot reference

http://docs.spring.io/spring/docs/5.0.0.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#web-reactive-getting-started-manual
http://docs.spring.io/spring/docs/5.0.0.BUILD-SNAPSHOT/spring-framework-reference/htmlsingle/#web-reactive-getting-started-manual

